资源类型

期刊论文 279

年份

2024 2

2023 33

2022 38

2021 33

2020 29

2019 18

2018 10

2017 14

2016 11

2015 8

2014 7

2013 6

2012 13

2011 11

2010 4

2009 4

2008 11

2007 9

2006 5

2005 1

展开 ︾

关键词

5G 2

医院中子照射器I型堆 2

压力容器技术 2

实时监控 2

抑爆抗爆 2

核心技术 2

1 1

2019-nCoV 1

2035 1

5% 法 1

5-戊二胺 1

5G 技术 1

5G;IMT-2020;关键技术;标准;现场试验 1

5G;交叉振子;双极化天线;终端天线;超宽带 1

5型腺病毒 1

6G安全;内生安全新范式;核心网;无线接入网 1

CITATION 1

COVID-19 1

展开 ︾

检索范围:

排序: 展示方式:

Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization

Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 258-266 doi: 10.1007/s11705-019-1878-0

摘要: Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.

关键词: core/shell ZSM-5     in situ recrystallization     mesopore     ketalation and acetalization reactions    

Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for

Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 248-257 doi: 10.1007/s11705-019-1853-9

摘要: Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution. The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication. The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first. Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant. In this manner, radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites. The optimal hierarchical ZSM-5 zeolite, prepared with a molar ratio of piperidine to zeolite of 0.03, had a mesopore surface area of 136 m ·g and a solid yield of 80%. The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length. Compared to the parent zeolite, the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.

关键词: hierarchical ZSM-5 zeolite     protective desilication     piperidine     radial mesopores     benzene alkylation    

Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration

Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 450-460 doi: 10.1007/s11705-015-1542-2

摘要: The effects of alkaline treatment on the physical properties of ZSM-5 catalysts and on their activities for methanol to aromatics conversion have been investigated. A mild alkaline treatment (0.2 and 0.3 mol/L NaOH) created mesopores in the parent zeolite with no obvious effect on acidity. The presence of mesopores gives the catalyst a longer lifetime and higher selectivity for aromatics. Treatment with 0.4 mol/L NaOH decreased the number of Brønsted acid sites due to dealumination and desilication, which resulted in a lower deactivation rate. In addition, more mesopores were produced than with the mild alkaline treatment. As a result, the lifetime of the sample treated with 0.4 mol/L NaOH was almost five times that of the parent ZSM-5. Treatment with a higher alkaline concentration (0.5 mol/L) greatly reduced the number of Brønsted acid sites and the number of micropores resulting in incomplete methanol conversion. When the alkaline-treated catalysts were washed with acid, some of the porosity was restored and a slight increase in selectivity for aromatics was obtained.

关键词: aromatics     ZSM-5     alkaline treatment     dealumination     desilication     mesopores     methanol    

Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane

Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 780-789 doi: 10.1007/s11705-018-1733-8

摘要: Hierarchical ZSM-5 zeolite aggregates with different sizes of nanocrystals were synthesized using different amounts of the mesoporogen 3-aminopropyltriethoxysilane. The effect of the crystal size on the catalytic cracking of -heptane was investigated and the Thiele modulus and effectiveness factor were used to determine the reaction rate-limiting step. The crystal size affected the textual properties of the catalysts but not the acidic properties of the catalysts. The reaction rate was first order with respect to the -heptane concentration. Cracking over hierarchical zeolites with nanocrystal sizes larger than about 50 nm took place under transition-limiting conditions, whereas the reaction over hierarchical zeolites with nanocrystal sizes of 15 or 30 nm proceeded under reaction control conditions. Hierarchical ZSM-5 zeolite aggregates with smaller nanocrystals had better selectivity for light olefins which can be ascribed to the shorter diffusion path lengths and lower diffusion resistance in these catalysts. Furthermore, these catalysts had lower coking levels which can be attributed to the substantial number of mesopores which prevent the formation of coke precursors.

关键词: hierarchical ZSM-5     crystal size     catalytic cracking     Thiele modulus     effectiveness factor    

The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure

Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 269-278 doi: 10.1007/s11705-020-1948-3

摘要: Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios (Hier-ZSM-5- , where = 50, 100, 150 and 200) were synthesized using an ordered mesoporous carbon-silica composite as hard template. Hier-ZSM-5- exhibits improved mass transport properties, excellent mechanical and hydrothermal stability, and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction. Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores, which increases the final catalytic conversion. The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites. These poisoned Hier-ZSM-5- shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite, which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant, leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites. This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance.

关键词: hierarchical zeolites     single crystalline     interconnected pores     improved diffusion performance     benzyl alcohol self-etherification reaction    

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1801-1808 doi: 10.1007/s11705-023-2325-9

摘要: Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.

关键词: aromatics     carbon dioxide     aromatization     coupling reaction     ZSM-5 zeolite    

nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1372-4

摘要:

• The MCNZVI is prepared as an interesting material for PS activation.

关键词: MCNZVI     Core-shell structure     Reactive Black 5     Persulfate     Mechanism    

Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application

Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 543-553 doi: 10.1007/s11705-018-1778-8

摘要: The hierarchical HZSM-5 was prepared via dealumination and desilication of commercial Al-rich HZSM-5, and characterized by X-ray diffraction, Al magic-angle spinning nuclear magnetic resonance, inductively coupled plasma mass spectrometry, scanning electron microscope, transmission electron microscope, N adsorption-desorption, NH temperature-programmed desorption, performed thermogravimetric and Raman spectrum. The results showed that partial framework of HZSM-5 was removed after steam treatment at 0.15 MPa, 500°C for 3 h. HZSM-5 with high specific surface area and much mesoporosity was obtained by the subsequent alkaline treatment. The regulation of acid quantity was achieved by altering the concentration of alkaline. Dealumination and desilication of Al-rich HZSM-5 zeolites became more effective using a combination of steam and alkaline treatments than using alkaline treatment alone. Methanol aromatization reaction was employed to evaluate the catalytic performance of treated HZSM-5 at 0.15 MPa, 450°C and MHSV of 1.5 h . The results indicated that after steam treatment, HZSM-5 further treated with 0.2 mol/L NaOH exhibits the best catalytic performance: the selectivity of aromatics reached 42.1% and the lifetime of catalyst attained 212 h, which are much better than untreated HZSM-5.

关键词: steam treatment     alkaline treatment     hierarchical ZSM-5     methanol aromatization    

Property-performance relationship of core-shell structured black TiO photocatalyst for environmental

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1711-3

摘要:

● Properties and performance relationship of CSBT photocatalyst were investigated.

关键词: Black TiO2     Core-shell structure     Property-performance relationship     Agro-industrial effluent     Environmental remediation    

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1557-0

摘要:

● A series of Cu-ZSM-5 catalysts were tested for DMF selective catalytic oxidation.

关键词: N     N-Dimethylformamide     Selective catalytic oxidation     Cu-ZSM-5     CuO particle size    

Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their

Michelle Lukosi,Huiyuan Zhu,Sheng Dai

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 39-56 doi: 10.1007/s11705-015-1551-1

摘要: Heterogeneous catalysis with core-shell structures has been a large area of focus for many years. This paper reviews the most recent work and research in core-shell catalysts utilizing noble metals, specifically gold, as the core within a metal oxide shell. The advantage of the core-shell structure lies in its capacity to retain catalytic activity under thermal and mechanical stress, which is a pivotal consideration when synthesizing any catalyst. This framework is particularly useful for gold nanoparticles in protecting them from sintering so that they retain their size, structure, and most importantly their catalytic efficiency. The different methods of synthesizing such a structure have been compiled into three categories: seed-mediated growth, post selective oxidation treatment, and one-pot chemical synthesis. The selective oxidation of carbon monoxide and reduction of nitrogen containing compounds, such as nitrophenol and nitrostyrene, have been studied over the past few years to evaluate the functionality and stability of the core-shell catalysts. Different factors that could influence the catalyst’s performance are the size, structure, choice of metal oxide shell and noble metal core and thereby the interfacial synergy and lattice mismatch between the core and shell. In addition, the morphology of the shell also plays a critical role, including its porosity, density, and thickness. This review covers the synthesis and characterization of gold-metal oxide core-shell structures, as well as how they are utilized as catalysts for carbon monoxide (CO) oxidation and selective reduction of nitrogen-containing compounds.

关键词: core-shell     characterization     core-shell structure     Different     stability    

Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons

Nuoya Wang, Xinhua Huang, Lei Zhang, Jinsong Hu, Yimin Chao, Ruikun Zhao

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 944-953 doi: 10.1007/s11705-020-2005-y

摘要: This work presents a simple effective strategy to synthesize -doped and shell-controlled carbon nanocages through a package baking approach. A green approach to synthesize core-shell ZIF-8@PTZ nanoparticles involves zinc contained ZIF-8 core wrapped by a N-enriched polytriazine (PTZ). Synthesized core-shell ZIF-8@PTZ nanoparticles are calcinated to further sublime zinc through PTZ shell and washed by HCl, leaving a porous carbon structure. At the meantime, hollow cavities were introduced into N-doped carbon polyhedrons via the sacrifice of ZIF-8 template (noted as ZIF-8@C/N-x). The electrochemical performance of the ZIF-8@C/N-x as supercapacitor electrode has demonstrated high energy density and specific capacitance, as well as a long-term cycleability showing 92% capacitance retention after 10000 cycles. There is a systematic correlation between micro-/meso-porosity of ZIF-8@C/N-x and their electrochemical performances.

关键词: core-shell     EDLC electrode     microporos nano polygons     nitrogen doped carbon    

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

《能源前沿(英文)》 2023年 第17卷 第4期   页码 555-566 doi: 10.1007/s11708-023-0882-8

摘要: Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.

关键词: CC@BCN@PANI cathode     Zn-ion hybrid supercapacitor     core-shell nanoarrays     high energy density     ultra-high cycle stability    

On the monolayer dispersion behavior of Co3O4 on HZSM-5 support: designing applicable

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1741-1754 doi: 10.1007/s11705-023-2332-x

摘要: Based on monolayer dispersion theory, Co3O4/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia. Co3O4 can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m–2, equaling to a weight percentage around 4.5%. It has been revealed that the quantities of surface active oxygen (O2) and acid sites are crucial for the reaction, which can adsorb and activate NOx and NH3 reactants effectively. Below the monolayer dispersion threshold, Co3O4 is finely dispersed as sub-monolayers or monolayers and in an amorphous state, which is favorable to generate the two kinds of active sites, hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide. However, the formation of crystalline Co3O4 above the capacity is harmful to the reaction performance. 4% Co3O4/ZSM-5, the catalyst close to the monolayer dispersion capacity, possesses the most abundant active O2 species and acidic sites, thereby demonstrating the best reaction performance in all the samples. It is proposed the optimal Co3O4/ZSM-5 catalyst can be prepared by loading the capacity amount of Co3O4 onto HZSM-5 support.

关键词: Co3O4/ZSM-5     NOx-SCR by NH3     monolayer dispersion threshold effect     surface acid sites     surface active O2 anions    

The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol

Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 564-574 doi: 10.1007/s11705-017-1654-y

摘要: In the transformation of methanol to gasoline (MTG), the selectivity to gasoline and the aromatic content in the produced gasoline are important factors. The catalytic activities of steam-treated and non-steam-treated nano-scale H-ZSM-5 (NHZ5) catalysts impregnated with Ag(I), Zn(II) or P(V) have been investigated in a continuous flow fixed bed reactor. The NH -TPD results showed that after impregnation, the Ag/NHZ5, Zn/NHZ5 and P/NHZ5 catalysts contained comparatively more strong, medium-strong and weak acid sites, respectively. Treatment with steam decreased the number of acid sites in all the catalysts, but the pore volumes in the catalysts were larger which improved carbon deposition resistance resulting in prolonged lifetimes. After 6 h of MTG reaction, the selectivity to gasoline for the steam-treated catalysts, , and were 70.5, 68.4 and 68.7 wt-%, respectively, whereas their respective aromatic contents in the produced gasoline were 61.9, 55.4 and 39.0 wt-%. Thus is the most promising catalyst for MTG applications which can meet the China IV gasoline standard that the amount of aromatics in gasoline should be less than 48 wt-%.

关键词: MTG     nano-scale H-ZSM-5     steam treatment     gasoline     selectivity to gasoline    

标题 作者 时间 类型 操作

Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization

Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu

期刊论文

Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for

Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang

期刊论文

Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration

Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu

期刊论文

Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane

Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren

期刊论文

The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure

Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su

期刊论文

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

期刊论文

nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5

期刊论文

Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application

Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu

期刊论文

Property-performance relationship of core-shell structured black TiO photocatalyst for environmental

期刊论文

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

期刊论文

Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their

Michelle Lukosi,Huiyuan Zhu,Sheng Dai

期刊论文

Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons

Nuoya Wang, Xinhua Huang, Lei Zhang, Jinsong Hu, Yimin Chao, Ruikun Zhao

期刊论文

CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors

期刊论文

On the monolayer dispersion behavior of Co3O4 on HZSM-5 support: designing applicable

期刊论文

The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol

Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han

期刊论文